

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-02/0020 vom 1. März 2016

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

enthält

Diese Europäische Technische Bewertung

Diese Europäische Technische Bewertung

wird gemäß der Verordnung (EU)
Nr. 305/2011 auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

MKT Einschlaganker E / ES

Wegkontrolliert spreizender Dübel zur Verankerung im ungerissenen Beton

MKT

Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach

MKT

Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach

16 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

Leitlinie für die europäisch technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 4: "Wegkontrolliert spreizende Dübel", April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.

ETA-02/0020 vom 22. September 2015

Z15072.16

Europäische Technische Bewertung ETA-02/0020

Seite 2 von 16 | 1. März 2016

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z15072.16 8.06.01-58/16

Europäische Technische Bewertung ETA-02/0020

Seite 3 von 16 | 1. März 2016

Besonderer Teil

1 Technische Beschreibung des Produkts

Der MKT Einschlaganker E / ES ist ein Dübel aus galvanisch verzinktem Stahl, aus nichtrostendem Stahl oder hochkorrosionsbeständigem Stahl, der in ein Bohrloch gesetzt und durch wegkontrollierte Verspreizung verankert wird.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Werte des Widerstandes gegen Zug- und Querbeanspruchung sowie Biegung in Beton	Siehe Anhang C 1 bis C 4
Rand- und Achsabstände	Siehe Anhang C 1 bis C 2
Verschiebungen unter Zug- und Querbeanspruchung	Siehe Anhang C 5

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Keine Leistung bestimmt

3.3 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß der Leitlinie für die europäisch technische Zulassung ETAG 001, April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Z15072.16 8.06.01-58/16

Europäische Technische Bewertung ETA-02/0020

Seite 4 von 16 | 1. März 2016

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 1. März 2016 vom Deutschen Institut für Bautechnik

Andreas Kummerow i.V. Abteilungsleiter

Beglaubigt:

Z15072.16 8.06.01-58/16

Einschlaganker E / ES Dübelgröße E M6x30 ES M6x30 E M8x30 ES M8x30 E M8x40 ES M8x40 ES M10x30 (nur verzinkt) E M10x40 ES M10x40 ES M12x50 E M12x50 ES M12x80 E M12x80 ES M16x65 E M16x65 E M16x80 ES M16x80 E M20x80 Einschlaganker E / ES Anhang A1 Produktbeschreibung Dübelgröße

Einbausituation

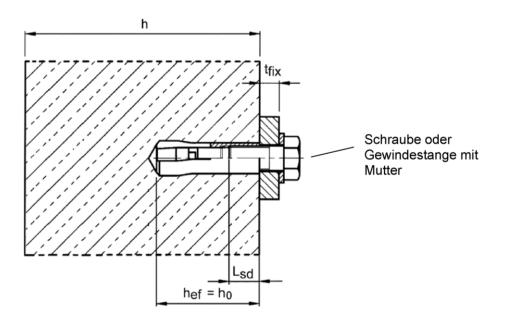
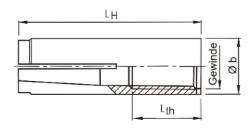
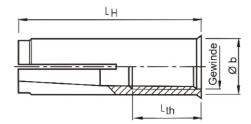


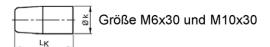
Tabelle A1: Benennung und Werkstoffe


Teil	Benennung	Stahl, galvanisch verzinkt	Nichtrostender Stahl A4	Hochkorrosions- beständiger Stahl HCR
1	Dübelhülse Automatenstahl, galvanisch verzinkt,		Nichtrostender Stahl, 1.4401, 1.4404, 1.4571, 1.4362, EN 10088:2005, Festigkeitsklasse 70, EN ISO 3506:2010	Nichtrostender Stahl, 1.4529, 1.4565, EN 10088:2005, Festigkeitsklasse 70, EN ISO 3506:2010
2	Konus	Kaltstauchstahl nach EN 10263-2:2001	Nichtrostender Stahl, 1.4401, 1.4- 10088:2005	404, 1.4571, 1.4362, EN

Einschlaganker E / ES	
Produktbeschreibung Einbausituation und Werkstoffe	Anhang A2



Dübelhülse


Dübelversion ohne Kragen (E)

Dübelversion mit Kragen (ES)

Konus

Prägung: siehe Tabelle A2

A4 zusätzliche Kennung für nichtrostenden Stahl A4

HCR zusätzliche Kennung für hochkorrosionsbeständigen Stahl

Tabelle A2: Dübelabmessungen und Prägung

	Dübelhülse				Kor	านร		Prägung	
Dübel- größe	Gewinde	Øb	L _H	L _{th}	Øk	L _K	Version E	Version E Version ES (mit Kragen) alte	
M6x30	М6	8	30	13	5,0	13		S ES M6x30	
M8x30	М8	10	30	13	6.5	12		⇔ ES M8x30	
M8x40	M8	10	40	20	6,5	12			
M10x30	M10	12	30	12	8,2	12	-	⇔ ES M10x30	
M10x40	M10	12	40	15	8,2	16		⇔ ES M10x40	
M12x50	M12	15	50	18	10,3	20		⇔ ES M12x50	
M12x80	M12	15	80	45	10,3	20		⇔ ES M12x80	
M16x65	M16	19,7	65	23	13,8	29		⇔ ES M16x65	
M16x80	M16	19,7	80	38	13,0	29		⇔ ES M16x80	
M20x80	M20	24,7	80	34	16,5	30	⇒ E M20x80		

Maße in mm

Einschlaganker E / ES

Produktbeschreibung

Dübelabmessungen und Prägung

Anhang A3

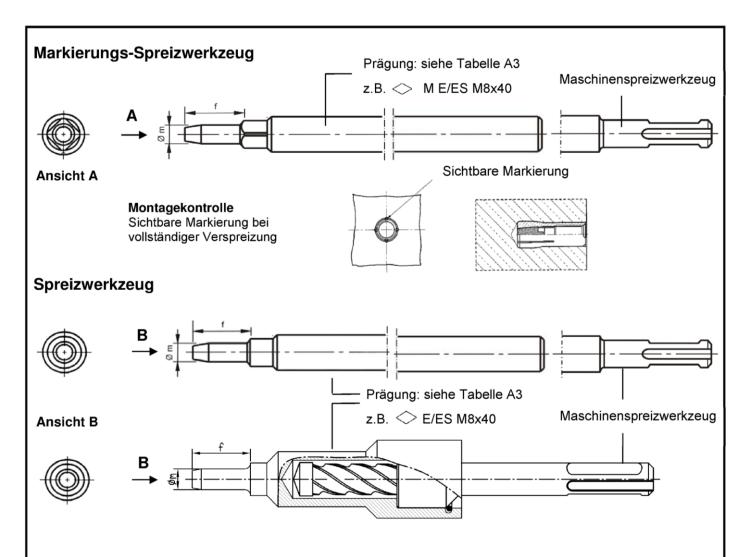


Tabelle A3: Abmessungen und Prägung der Spreizwerkzeuge

Dübel-			Markierungs-Sp	reizwerkzeug	Spreizwe	erkzeug
größe	(/ m		Prägung	Alternative Prägung	Prägung	Alternative Prägung
M6x30	4,9	17	⇔ M E/ES M6x30			⇒ E M6
M8x30	6,4	18	⇔ M E/ES M8x30			
M8x40	6,4	28				
M10x30	8,0	18				⇒ E M10x30
M10x40	8,0	24				⇒ E M10
M12x50	10,0	30				⇒ E M12
M12x80	10,0	60				⇒ E M12x80
M16x65	13,5	36				⇒ E M16
M16x80	13,5	51				⇒ E M16x80
M20x80	16,5	50			⇒ E M20x80	⇒ E M20

Maße in mm

Einschlaganker E / ES	
Produktbeschreibung Setzwerkzeug, Abmessungen und Prägung	Anhang A4

Spezifizierung des Verwendungszwecks

Verankerungen unter:

Statische oder quasi-statische Einwirkung

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton nach EN 206-1:2000
- Ungerissener Beton
- Festigkeitsklasse C20/25 bis C50/60 nach EN 206-1:2000

Anwendungsbedingungen:

- Bauteile unter Bedingungen trockener Innenräume (galvanisch verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien, einschließlich Industrieatmosphäre und Meeresnähe oder Bauteile in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl)

Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Bemessung:

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) anzugeben.
- Die Festigkeitsklasse und die L\u00e4nge der Befestigungsschraube oder der Gewindestange m\u00fcssen vom Planer festgelegt werden.
- Bemessung der Verankerungen unter statischer oder quasi-statischer Einwirkung nach:
 - ETAG 001, Anhang C, Bemessungsmethode A, Ausgabe August 2010 oder
 - CEN/TS 1992-4:2009, Bemessungsmethode A

Einbau:

- Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters,
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen mit den in der technischen Dokumentation angegebenen Spreizwerkzeugen,
- Bohrlocherstellung nur durch Hammerbohren,
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung.

Verwendungszweck
Spezifikationen

Einschlaganker E / ES

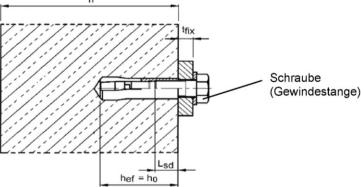

Anhang B1

Tabelle B1: Montage- und Dübelkennwerte

Dübelgröße			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x80	M16x65	M16x80	M20x80
Bohrlochtiefe	h ₀ =	[mm]	30	30	40	30	40	50	80	65	80	80
Bohrernenndurchmesser	d ₀ =	[mm]	8	10	10	12	12	15	15	20	20	25
Bohrerschneiden- durchmesser	$d_{cut} \leq$	[mm]	8,45	10,45	10,45	12,5	12,5	15,5	15,5	20,55	20,55	25,55
max. Drehmoment beim Verankern 1)	T _{inst} ≤	[Nm]	4	8	8	15	15	35	35	60	60	120
Durchgangsloch im anzuschließenden Bauteil	$d_f \! \leq \!$	[mm]	7	9	9	12	12	14	14	18	18	22
Gewindelänge	L_th	[mm]	13	13	20	12	15	18	45	23	38	34
Mindesteinschraubtiefe	L _{sdmin}	[mm]	7	9	9	10	11	13	13	18	18	22
Stahl, galvanisch verzink	t											
Mindestbauteildicke	h _{min}	[mm]	100	100	100	120	120	130	130	160	160	200
Minimaler Achsabstand	S _{min}	[mm]	55	60	80	100	100	120	120	150	150	160
Minimaler Randabstand	C _{min}	[mm]	95	95	95	115	135	165	165	200	200	260
Nichtrostender Stahl A4,	HCR											
Mindestbauteildicke	h _{min}	[mm]	100	100	100	-	130	140	140	160	160	250
Minimaler Achsabstand	S _{min}	[mm]	50	60	80	-	100	120	120	150	150	160
Minimaler Randabstand	C _{min}	[mm]	80	95	95		135	165	165	200	200	260

Wenn die Schraube oder Gewindestange anderweitig gegen Herausdrehen gesichert ist, kann auf das Drehmoment verzichtet werden.

Anforderungen an die Schraube bzw. an die Gewindestange und Mutter entsprechend Planungsunterlagen:

- Minimale Einschraubtiefe L_{sdmin} siehe Tabelle B1
- Die Länge der Schraube bzw. der Gewindestange muss in Abhängigkeit von der Anbauteildicke t_{fix}, der vorhandenen Gewindelänge L_{th} (= maximale Einschraubtiefe) und der minimalen Einschraubtiefe L_{sdmin} festgelegt werden.
- A₅ > 8 % Duktilität

Stahl, galvanisch verzinkt

Festigkeitsklasse 4.6 / 5.6 / 5.8 oder 8.8 nach EN ISO 898-1:2013 bzw. EN ISO 898-2:2012

Nichtrostender Stahl A4

- Werkstoff 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362, nach EN 10088:2005
- Festigkeitsklasse 70 oder 80 nach EN ISO 3506:2010

Hochkorrosionsbeständiger Stahl (HCR)

- Werkstoff 1.4529; 1.4565, nach EN 10088:2005
- Festigkeitsklasse 70 oder 80 nach EN ISO 3506:2010

Einschlaganker E / ES Verwendungszweck Montage- und Dübelkennwerte Anhang B2

Montageanweisung Bohrloch senkrecht zur Oberfläche des 1 Verankerungsgrunds erstellen. 2 Bohrloch vom Grund her ausblasen. 3 Anker einschlagen. Konus mit Spreizwerkzeug eintreiben. Der Anschlag des Spreizwerkzeugs muss auf dem 5 Ankerrand aufsetzen. TINST $\label{eq:montaged} \mbox{Montagedrehmoment T_{inst} mit kalibriertem } \mbox{Drehmomentschlüssel aufbringen}.$ 6

Einschlaganker E / ES	
Verwendungszweck Montageanweisung	Anhang B3

10,1

Dübelgröße			M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x30 ¹⁾	M10x40	M12x50	M12x80	M16x65 M16x80	M20x80		
Montagesicherheitsb	beiwert $\gamma_2 = \gamma_{inst}$	[-]					1,2						
Stahlversagen													
Charakteristische Zugtragfähigkeit Stal	ıhl 4.6	[kN]	8,0	14,	6	23,	2	33	3,7	62,8	98,0		
Teilsicherheitsbeiwe	ert γ _{Ms}	[-]					2,0						
Charakteristische Zugtragfähigkeit Stahl 5.6	$N_{Rk,s}$	[kN]	10,0	18,	3	18,0	20,2	42	42,1		42,1		122,4
Teilsicherheitsbeiwe	ert γ _{Ms}	[-]		2,0		1,	1,5			2,0			
Charakteristische Zugtragfähigkeit Stahl 5.8	$N_{Rk,s}$	[kN]	10,0	17,6	18,3	18,0	20,2	40,2	42,1	67,1	106,4		
Teilsicherheitsbeiwe	ert γ _{Ms}	[-]		1,5						1,	6		
Charakteristische Zugtragfähigkeit Stahl 8.8	$N_{Rk,s}$	[kN]	15,0	17,6	19,9	18,0	20,2	40,2	43,0	67,1	106,4		
Teilsicherheitsbeiwe	ert γ _{Ms}	[-]			1	,5				1,	6		
Herausziehen													
Charakteristische Tra im Beton C20/25	ragfähigkeit _{NRk,p}	[kN]	2)	2)	9	2)	2)	2	2)	2)	2)		
Erhöhungsfaktor für	$N_{Rk,p}$ ψ_C	[-]			$\left(\frac{f_{ck,cube}}{25}\right)^{0,3}$								
Betonausbruch und	d Spalten												
Verankerungstiefe	h _{ef}	[mm]	30	30	40	30	40	5	0	65	80		
Achsabstand	s _{cr,N} (= 2 c _{cr,N})	[mm]				·	3 h _{ef}						
(Randabstand)	s _{cr,sp} (= 2 c _{cr,sp})	[mm]	190	190	190	230	270	33	30	400	520		

 $^{^{1)}\,\}mathrm{Nur}\,\mathrm{zur}\,\mathrm{Verwendung}$ in statisch unbestimmten Systemen $^{2)}\,\mathrm{Herausziehen}$ ist nicht maßgebend

Faktor gemäß CEN/TS 1992-4

Einschlaganker E / ES	
Leistung Charakteristische Werte bei Zugbeanspruchung, verzinkt	Anhang C1

Tabelle C2: Charakteristische Werte bei Zugbeanspruchung, nichtrostender Stahl A4, HCR

Dübelgröße			M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x40	M12x50 M12x80	M16x65 M16x80	M20x80
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{inst}$	[-]				1,0			
Stahlversagen									
Charakteristische Zugtragfähigk (Festigkeitsklasse 70)	eit N _{Rk,s}	[kN]	14,1	23,	3	29,4	50,2	83,8	133,0
Charakteristische Zugtragfähigk (Festigkeitsklasse 80)	eit N _{Rk,s}	[kN]	17,5	23,	3	29,4	50,2	83,8	133,0
Teilsicherheitsbeiwert	γ _{Ms} ³⁾	[-]				1,87			
Herausziehen									
Charakteristische Tragfähigkeit Beton C20/25	im N _{Rk,p}	[kN]	2)	2)	9	2)	2)	2)	2)
Erhöhungsfaktor für N _{Rk,p}	Ψс	[-]			$\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$				
Betonausbruch und Spalten									
Verankerungstiefe	h _{ef}	[mm]	30 ³⁾	30	40	40	50	65	80
Achsabstand (Randabstand)	s _{cr,N} (= 2 c _{cr,N})	[mm]				3 h _{ef}			
	s _{cr,sp} (= 2 c _{cr,sp})	[mm]	160	190	190	270	330	400	520
Faktor gemäß CEN/TS 1992-4	k _{ucr}	[-]				10,1			

¹⁾ Nur zur Verwendung in statisch unbestimmten Systemen

2) Herausziehen ist nicht maßgebend.

Einschlaganker E / ES

Leistung

Charakteristische Werte bei Zugbeanspruchung, nichtrostender Stahl A4, HCR

Anhang C2

³⁾ Beim Nachweis gegen Betonversagen nach ETAG 001, Anhang C oder CEN/TS 1992-4-4 ist N⁰_{Rk,c} mit dem Faktor (25/f_{ck,cube})^{0,2} zu multiplizieren.

Tabelle C3: Charakteristische Werte bei Querbeanspruchu

Dübelgröße			M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x30 ¹⁾	M10x40	M12x50	M12x80	M16x65 M16x80	M20x80
Stahlversagen ohne Heb	elarm										
Charakteristische Tragfähigkeit Stahl 4.6	$V_{Rk,s}$	[kN]	4,0	7,	3	11,6	9,6	16,8		31,3	49,0
Teilsicherheitsbeiwert	γ_{Ms}	[-]					1,67				
Charakteristische Tragfähigkeit Stahl 5.6	$V_{Rk,s}$	[kN]	5,0	9,	9,1		9,6	21,1		39,2	61,2
Teilsicherheitsbeiwert	γ_{Ms}	[-]		1,67		1,25			1,67		
Charakteristische Tragfähigkeit Stahl 5.8	$V_{Rk,s}$	[kN]	5,0	6,	9	10,1	7,2	19,4 21,1		33,5	53,2
Teilsicherheitsbeiwert	γMs	[-]				1,25				1,	33
Charakteristische Tragfähigkeit Stahl 8.8	$V_{Rk,s}$	[kN]	5,0	6,	9	10,1	7,2	19,4	21,5	33,5	53,2
Teilsicherheitsbeiwert	γMs	[-]				1,25				1,33	
Duktilitätsfaktor	k ₂	[-]					1,0				
Stahlversagen mit Hebe	larm										
Charakteristisches Biegemoment Stahl 4.6	M ⁰ _{Rk,s}	[Nm]	6,1	1 15		30	30	52		133	259
Teilsicherheitsbeiwert	γMs	[-]					1,67				
Charakteristisches Biegemoment Stahl 5.6	M ⁰ _{Rk,s}	[Nm]	7,6	1	9	37	37	65		166	324
Teilsicherheitsbeiwert	γMs	[-]					1,67				
Charakteristisches Biegemoment Stahl 5.8	M ⁰ _{Rk,s}	[Nm]	7,6	1	9	37	37	65		166	324
Teilsicherheitsbeiwert	γMs	[-]					1,25				
Charakteristisches Biegemoment Stahl 8.8	M ⁰ _{Rk,s}	[Nm]	12	3	0	59	60	1	105	266	519
Teilsicherheitsbeiwert	γMs	[-]					1,25				
Duktilitätsfaktor	k ₂	[-]					1,0				
Betonausbruch auf der I	astabge	wandte	n Seite								
Faktor k gemäß ETAG 001, Anhang C bzw. k₃ gemäß CEN/TS	k ₍₃₎	[-]			1,0			1	,5	2,	0
Betonkantenbruch											
Wirksame Dübellänge bei Querlast	I _f	[mm]	30	30	40	30	40	ţ	50	65	80
Wirksamer Außendurchmesser	d_{nom}	[mm]	8	10	10	12	12	•	15	20	25

¹⁾ Nur zur Verwendung in statisch unbestimmten Systemen

Einschlaganker E / ES	
Leistung Charakteristische Werte bei Querbeanspruchung, verzinkt	Anhang C3

Tabelle C4: Charakteristische Werte bei Querbeanspruchung, nichtrostender Stahl A4, HCR

				•	•				-
Dübelgröße			M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x40	M12x50 M12x80	M16x65 M16x80	M20x80
Stahlversagen ohne Hebelarm									
Charakteristisches Quertragfähigkeit (Festigkeitsklasse 70)	$V_{Rk,s}$	[kN]	7,0	7,0 10,6		13,4	25,1	41,9	66,5
Charakteristisches Quertragfähigkeit (Festigkeitsklasse 80)	$V_{Rk,s}$	[kN]	8,7	10,	6	13,4	25,1	41,9	66,5
Teilsicherheitsbeiwert	γMs	[-]				1,56			
Duktilitätsfaktor	[-]				1,0				
Stahlversagen mit Hebelarm									
Charakteristisches Biegemoment (Festigkeitsklasse 70)	$M^0_{Rk,s}$	[Nm]	11	26		52	92	233	454
Teilsicherheitsbeiwert	γMs	[-]				1,56			
Charakteristisches Biegemoment (Festigkeitsklasse 80)	$M^0_{Rk,s}$	[Nm]	12	3	0	60	105	266	519
Teilsicherheitsbeiwert	γMs	[-]				1,33			
Duktilitätsfaktor	k_2	[-]	1,0						
Betonausbruch auf der lastabgewandten	Seite								
Faktor k gemäß ETAG 001, Anhang C bzw. k_3 gemäß CEN/TS	k ₍₃₎	[-]	1,0	1,	7	1,	7	2,0	
Betonkantenbruch									
Wirksame Dübellänge bei Querlast		[mm]	30	30	40	40	50	65	80
Wirksamer Außendurchmesser d _{nom} [ı		[mm]	8	10	10	12	15	20	25

¹⁾ Nur zur Verwendung in statisch unbestimmten Systemen

Einschlaganker E / ES

Leistung

Charakteristische Werte bei Querbeanspruchung, nichtrostender Stahl A4, HCR

Anhang C4

Tabelle C5: Verschiebungen unter Zuglast

Dübelgröße			M6x30	M8x30	M8x40	M10x30	M10x40		M16x65 M16x80	M20x80
Stahl galvanisch verzinkt										
Zuglast im ungerissenen Beton	Ν	[kN]	3	3	3,6	3,3	4,8	6,4	10	14,8
Verschiebung	δ_{N0}	[mm]	0,24							
	$\delta_{N\infty}$	[mm]	0,36							
Nichtrostender Stahl A4 / HCR										
Zuglast im ungerissenen Beton	N	[kN]	4	4	4,3	-	6,1	8,5	12,6	17,2
Verschiebung	δ_{N0}	[mm]	0,12							
	$\delta_{N\infty}$	[mm]				0,	24			

Tabelle C6: Verschiebungen unter Querlast

Dübelgröße			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50 M12x80		M20x80
Stahl galvanisch verzinkt										
Querlast im ungerissenen Beton	V	[kN]	2	4	4	5,7	4,0	11,3	18,8	32,2
Verschiebung	δ_{V0}	[mm]	0,9	0,9	1,0	1,5	0,6	1,2	1,2	1,6
	$\delta_{V_{\infty}}$	[mm]	1,3	1,3	1,5	2,3	0,9	1,9	1,9	2,4
Nichtrostender Stahl A4 / HCR										
Querlast im ungerissenen Beton	V	[kN]	3,5	5,2	5,2	-	6,5	11,5	19,2	30,4
Verschiebung	δ_{V0}	[mm]	1,9	1,1	0,7	-	1,0	1,7	2,4	2,6
	δ_{V_∞}	[mm]	2,8	1,6	1,0	-	1,5	2,6	3,6	3,8

Einschlaganker E / ES

Leistung Verschiebung Anhang C5

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische **Technische Bewertung**

ETA-05/0116 vom 4. Januar 2017

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

MKT Einschlaganker E / ES

Wegkontrolliert spreizender Dübel für die Verwendung als Mehrfachbefestigung von nichttragenden Systemen in Beton

Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach

Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach

20 Seiten, davon 3 Anhänge

Leitlinie für die europäische technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 6: "Dübel für die Verwendung als Mehrfachbefestigung von nichttragenden Systemen",

verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU)

Nr. 305/2011, ausgestellt.

ETA-05/0116 vom 25. September 2015

Z78829.16

Europäische Technische Bewertung ETA-05/0116

Seite 2 von 20 | 4. Januar 2017

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z78829.16 8.06.01-189/16

Europäische Technische Bewertung ETA-05/0116

Seite 3 von 20 | 4. Januar 2017

Besonderer Teil

1 Technische Beschreibung des Produkts

Der MKT Einschlaganker E / ES ist ein Dübel aus galvanisch verzinktem Stahl, aus nichtrostendem Stahl oder hochkorrosionsbeständigem Stahl, der in ein Bohrloch gesetzt und durch wegkontrollierte Verspreizung verankert wird.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Die wesentlichen Merkmale bezüglich Mechanischer Festigkeit und Standsicherheit sind unter der Grundanforderung Sicherheit bei der Nutzung erfasst.

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung			
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1			
Feuerwiderstand	Siehe Anhang C 4 bis C 5			

3.3 Sicherheit bei der Nutzung (BWR 4)

Wesentliches Merkmal	Leistung
Charakteristische Werte für statische und quasistatische Einwirkungen	Siehe Anhang C 1 bis C 3

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß der Leitlinie für die europäisch technische Zulassung ETAG 001, April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, gilt folgende Rechtsgrundlage: [97/161/EG].

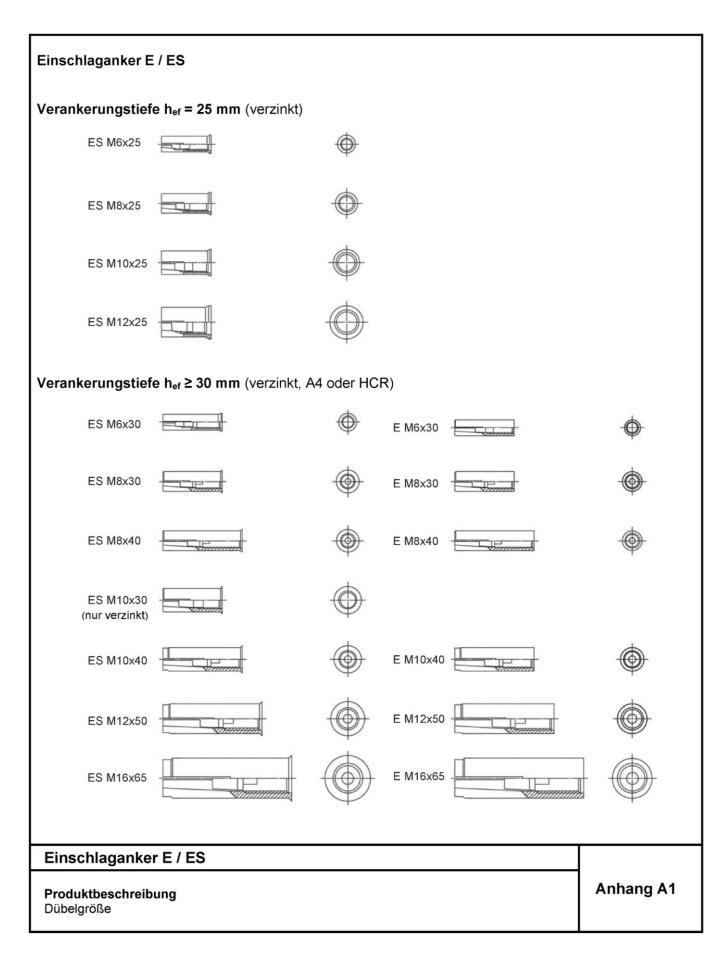
Folgendes System ist anzuwenden: 2+

Z78829.16 8.06.01-189/16

Europäische Technische Bewertung ETA-05/0116

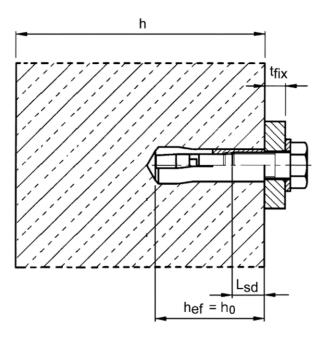
Seite 4 von 20 | 4. Januar 2017

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

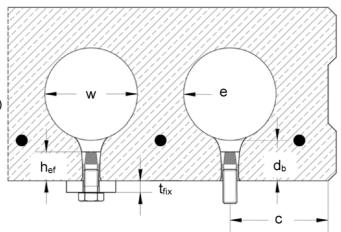

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 4. Januar 2017 vom Deutschen Institut für Bautechnik

Andreas Kummerow i. V. Abteilungsleiter



Einbausituation


Einbausituation in Spannbetonhohlplatten für hef = 25 mm

w / e ≤ 4,2

w Hohlraumbreite e Stegbreite d_b Spiegeldicke

≥ 35mm (oder ≥ 30mm, s. Anhang C3)

 $\begin{array}{ll} h_{\text{ef}} & \text{Verankerungstiefe} \\ t_{\text{fix}} & \text{Anbauteildicke} \\ c & \text{Randabstand} \end{array}$

Einschlaganker E / ES

Produktbeschreibung

Einbausituation

Anhang A2

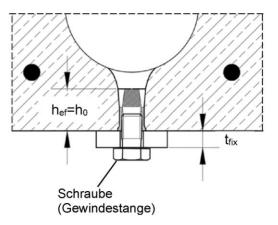
Tabelle A1: Benennung und Werkstoffe Einschlaganker E / ES

Teil	Benennung	Stahl, galvanisch verzinkt	Nichtrostender Stahl A4	Hochkorrosions- beständiger Stahl HCR
1	Dübelhülse	Kaltstauch- bzw. Automatenstahl, galvanisch verzinkt, EN ISO 4042:1999	Nichtrostender Stahl (z.B. 1.4401, 1.4404, 1.4571, 1.4362) EN 10088:2014, Festigkeitsklasse 70, EN ISO 3506:2010	Nichtrostender Stahl, 1.4529, 1.4565, EN 10088:2014, Festigkeitsklasse 70, EN ISO 3506:2010
2	Konus	Kaltstauch- bzw. Automatenstahl	Nichtrostender Stahl (z.B. 1.4401 EN 10088:2014	, 1.4404, 1.4571, 1.4362)

Anforderungen an die Schraube bzw. an die Gewindestange und Mutter entsprechend Planungsunterlagen:

- Minimale Einschraubtiefe L_{sdmin} siehe Tabelle B1 und B2
- Die Länge der Schraube bzw. der Gewindestange muss in Abhängigkeit von der Anbauteildicke t_{fix}, der vorhandenen Gewindelänge L_{th} (= maximale Einschraubtiefe) und der minimalen Einschraubtiefe L_{sdmin} festgelegt werden.
- A₅ > 8 % Duktilität

Stahl, galvanisch verzinkt

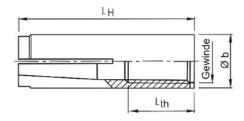

• Festigkeitsklasse 4.6 / 4.8 / 5.6 / 5.8 oder 8.8 nach EN ISO 898-1:2013 bzw. EN ISO 898-2:2012

Nichtrostender Stahl A4

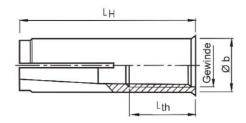
- Werkstoff 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362, nach EN 10088:2014
- Festigkeitsklasse 70 oder 80 nach EN ISO 3506:2010

Hochkorrosionsbeständiger Stahl (HCR)

- Werkstoff 1.4529; 1.4565, nach EN 10088:2014
- Festigkeitsklasse 70 oder 80 nach EN ISO 3506:2010



Produktbeschreibung Werkstoffe E / ES und Anforderungen an die Schraube bzw. Gewindestange und Mutter Anhang A3



Dübelhülse

Dübelversion ohne Kragen (E)

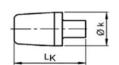
Dübelversion mit Kragen (ES)

Prägung: siehe Tabelle A2

40

A4 zusätzliche Kennung für

Verankerungstiefe


HCR zusätzliche Kennung für hochkorrosionsbeständigen Stahl

nichtrostenden Stahl A4

Konus

Größe M6x25 bis M12x25, M6x30 und M10x30

Verbleibende Größen

Tabelle A2: Dübelabmessungen und Prägung

	Dübelhülse Konus						Prägung						
Dübel- größe	Gewinde	Øb	Lн	L _{th}	Øk	Lĸ	Version E	Version ES	alternativ				
M6x25	M6	8	25	12	4,6	9	-	S ES M6x25	-				
M6x30	M6	8	30	13	5,0	13	⇒ E M6x30	S ES M6x30					
M8x25	M8	10	25	12	6,3	9	-	⇔ ES M8x25	¥				
M8x30	M8	10	30	13	6,5	12		⇔ ES M8x30					
M8x40	M8	10	40	20	6,5	12							
M10x25	M10	12	25	12	8,2	9	,	⇔ ES M10x25	-				
M10x30	M10	12	30	12	8,2	12		⇔ ES M10x30					
M10x40	M10	12	40	15	8,2	16	⇒ E M10x40	⇔ ES M10x40					
M12x25	M12	15	25	12	9,7	10,7	1	⇔ ES M12x25	-				
M12x50	M12	15	50	18	10,3	20		⇔ ES M12x50					
M16x65	M16	19,7	65	23	13,8	29	⇒ E M16x65	⇔ ES M16x65					

Maße in mm

Einschlaganker E / ES

Produktbeschreibung

Dübelabmessungen und Prägung

Anhang A4

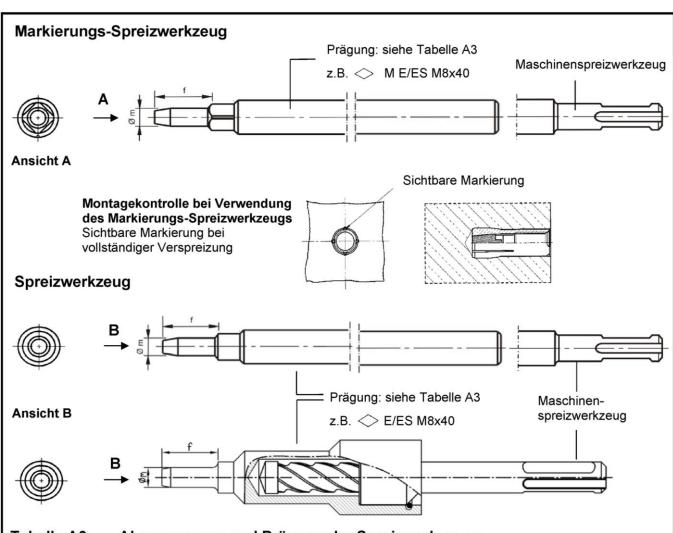


Tabelle A3: Abmessungen und Prägung der Spreizwerkzeuge

Dübel-	Øm		Markierungs-Spr	eizwerkzeug	Spreizwerkzeug			
größe	וווש	'	Prägung	alternativ	Prägung	alternativ		
M6x25	4,9	17	→ M ES M6x25	-	⇒ ES M6x25	-		
M6x30	4,9	17			⇔ E/ES M6x30	⇒ E M6		
M8x25	6,4	17		-				
M8x30	6,4	18		→ M E M8		⇒ E M8		
M8x40	6,4	28				⇒ E M8x40		
M10x25	8,0	18		-	⇒ ES M10x25	= 1		
M10x30	8,0	18			⇒ ES M10x30	⇒ E M10x30		
M10x40	8,0	24				⇒ E M10		
M12x25	10,0	15,5		-		= 0		
M12x50	10,0	30				⇒ E M12		
M16x65	13,5	36				⇒ E M16		
	·					Maße in mm		

Einschlaganker E / ES

Produktbeschreibung
Setzwerkzeug, Abmessungen und Prägung

Anhang A5

Spezifizierung des Verwendungszwecks

Einschlaganker							
Verankerungstiefe h _{ef} ≥ 30 mm	M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65
Stahl, verzinkt				✓			
Nichtrostender Stahl A4 und hochkorrosionsbeständiger Stahl HCR		✓		-		✓	
Statische oder quasi-statische Einwirkung				✓			
Brandbeanspruchung				✓			
Gerissener oder ungerissener Beton			·	✓		·	·
Massivbeton C20/25 bis C50/60			·	✓		·	

Verankerungstiefe h _{ef} = 25 mm	M6x25	M8x25	M10x25	M12x25
Stahl, verzinkt		,	✓	
Nichtrostender Stahl A4 und hochkorrosionsbeständiger Stahl HCR			-	
Statische oder quasi-statische Einwirkung		,	✓	
Brandbeanspruchung (Massivbeton, C20/25 bis C50/60)		,	✓	
Gerissener oder ungerissener Beton			✓	
Massivbeton C12/15 bis C50/60		,	✓	
Spannbetonhohlplatten (C30/37 bis C50/60)		,	✓	

Verankerungsgrund:

Bewehrter oder unbewehrter Normalbeton nach EN 206-1:2000

Anwendungsbedingungen:

- Bauteile unter Bedingungen trockener Innenräume (galvanisch verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl)

Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

ĺ	Einschlaganker E / ES	
	Verwendungszweck Spezifikationen	Anhang B1

Spezifizierung des Verwendungszwecks

Bemessung:

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) anzugeben.
- Die Festigkeitsklasse und die L\u00e4nge der Befestigungsschraube oder der Gewindestange m\u00fcssen vom Planer festgelegt werden.
- Bemessung der Verankerungen unter statischer oder quasi-statischer Einwirkung für die Mehrfachbefestigung nichtragender Systeme nach:
 - ETAG 001, Anhang C, Bemessungsverfahren B, Ausgabe August 2010 oder
 - CEN/TS 1992-4:2009, Bemessungsmethode B
- Bemessung der Verankerungen unter statischer oder quasi-statischer Einwirkung für Spanbetonhohlplatten nach:
 - ETAG 001, Anhang C, Bemessungsverfahren C, Ausgabe August 2010
 - CEN/TS 1992-4:2009, Bemessungsmethode C
- Bemessung der Verankerungen unter Brandbeanspruchung erfolgt nach:
 - ETAG 001, Anhang C, Bemessungsverfahren B, Ausgabe August 2010 und EOTA Technical Report TR 020, Ausgabe Mai 2004 oder
 - CEN/TS 1992-4:2009, Anhang D
 - Es muss sichergestellt werden, dass unter Brandbeanspruchung keine lokalen Abplatzungen der Betonoberfläche auftreten.

Einbau:

- Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters,
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen mit den in der technischen Dokumentation angegebenen Spreizwerkzeugen,
- Bohrlocherstellung nur durch Hammerbohren (Verwendung von Saugbohrern ist erlaubt),
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung.

ı		
	Einschlaganker E / ES	
	Verwendungszweck Spezifikationen	Anhang B2

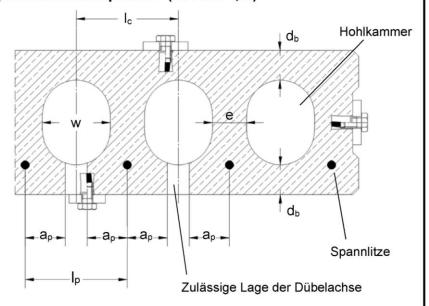
Tabelle B1: Montage- und Dübelkennwerte für hef≥ 30 mm

Dübelgröße			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65
Bohrlochtiefe	h ₀ =	[mm]	30	30	40	30	40	50	65
Bohrernenndurchmesser	d ₀ =	[mm]	8	10	10	12	12	15	20
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]	8,45	10,45	10,45	12,5	12,5	15,5	20,55
max. Drehmoment beim Verankern	T _{inst} ≤	[Nm]	4	8	8	15	15	35	60
Durchgangsloch im anzuschließenden Bauteil	$d_f \leq $	[mm]	7	9	9	12	12	14	18
Gewindelänge	L_th	[mm]	13	13	20	12	15	18	23
Mindesteinschraubtiefe	L _{sdmin}	[mm]	7	9	9	10	11	13	18
Stahl, galvanisch verzinkt									
Mindestbauteildicke	h _{min}	[mm]	100	100	100	120	120	130	160
Minimaler Achsabstand	Smin	[mm]	55	60	80	100	100	120	150
Minimaler Randabstand	C _{min}	[mm]	95	95	95	115	135	165	200
Nichtrostender Stahl A4, HCR									
Mindestbauteildicke	h _{min}	[mm]	100	100	100	-	130	140	160
Minimaler Achsabstand	Smin	[mm]	50	60	80	-	100	120	150
Minimaler Randabstand	C _{min}	[mm]	80	95	95	-	135	165	200

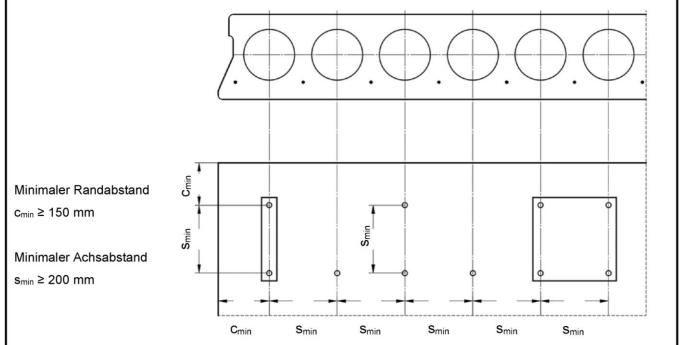
Tabelle B2: Montage- und Dübelkennwerte für hef = 25 mm

Dübelgröße			M6x25	M8x25	M10x25	M12x25
Bohrlochtiefe	h ₀ =	[mm]	25	25	25	25
Bohrernenndurchmesser	d ₀ =	[mm]	8	10	12	15
Bohrerschneidendurchmesser	$d_{\text{cut}} \leq$	[mm]	8,45	10,45	12,5	15,5
max. Drehmoment beim Verankern	T _{inst} ≤	[Nm]	4	8	15	35
Durchgangsloch im anzuschließenden Bauteil	$d_f \leq $	[mm]	7	9	12	14
Gewindelänge	L_{th}	[mm]	12	12	12	12
Mindesteinschraubtiefe	L _{sdmin}	[mm]	6	8	10	12
Mindestbauteildicke	h _{min,1}	[mm]	80			
Minimaler Achsabstand	Smin	[mm]	30	70	70	100
Minimaler Randabstand	C _{min}	[mm]	60	100	100	130
Standardbauteildicke	h _{min,2}	[mm]		10	00	
Minimaler Achsabstand	Smin	[mm]	30	50	60	100
Minimaler Randabstand	Cmin	[mm]	60	100	100	110
Einbau in Spannbetonhohlplatten C30/37 bis	C50/60					
Achsabstand	Smin	[mm]		20	00	
Randabstand	C _{min}	[mm]		15	50	

Einschlaganker E / ES	
Verwendungszweck Montage- und Dübelkennwerte	Anhang B3



Zulässige Ankerpositionen für Spannbetonhohlplatten (w/e≤4,2)


Abstand zwischen Hohlraumachsen: $I_c \ge 100 \text{ mm}$

Abstand zwischen Spannlitzen: $I_p \ge 100 \text{ mm}$

Abstand zwischen Spannlitze und Bohrloch: $a_p \ge 50 \text{ mm}$

Minimale Rand- und Achsabstände für Spannbetonhohlplatten

Einschlaganker E / ES

Verwendungszweck

Einbau in Spannbetonhohlplatte

Anhang B4

1	90-	Bohrloch senkrecht zur Oberfläche des Verankerungsgrunds erstellen. Bei Verwendung eines Saugbohrers bei Schritt drei fortfahren.
2		Bohrloch vom Grund her ausblasen oder aussaugen.
3		Anker einschlagen.
4	+ :	Konus mit Spreizwerkzeug eintreiben.
5		Der Anschlag des Spreizwerkzeugs muss auf dem Ankerrand aufsetzen.
6	Tinst	Montagedrehmoment T _{inst} mit kalibriertem Drehmomentschlüssel aufbringen.

Einschlaganker E / ES	
Verwendungszweck Montageanweisung für Massivbetonbauteile	Anhang B5

ontagean	weisung für Spannbet	onhohlplatten					
1		Position der Spannlitze suchen.					
2		Position markieren, nächste Spannlitze suche	en.				
3		Position der zweiten Spannlitze markieren.					
4	2.50mm 2.100mm	Bohrloch unter Beachtung der erforderlicher erstellen.	n Abstände				
5		Bohrloch ausblasen oder aussaugen.					
6		Anker einschlagen.					
7		Konus mit Spreizwerkzeug eintreiben.					
8		Der Anschlag des Spreizwerkzeugs muss auf Ankerrand aufsetzen.	f dem				
9	max T _{inst}	Montagedrehmoment T _{inst} mit kalibriertem Drehmomentschlüssel aufbringen.					
inschlaga	nker E / ES						
/erwendung lontageanwe	szweck eisung für Spannbetonhohlpl	atten	Anhang B				

Tabelle C1: Charakteristischer Widerstand für hef ≥ 30 mm in Massivbetonbauteilen

Dübelgröße			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65
Last in beliebige Richtung									
Charakteristischer Widerstand in Beton C20/25 bis C50/60	F ⁰ Rk	[kN]	3	5	6	6	6	6	16
Teilsicherheitsbeiwert	γ_{M}	[-]	1,8	2,	16	2,1	2,16	1,8	1,8
Achsabstand	Scr	[mm]	130	180	210	230	170	170	400
Randabstand	Ccr	[mm]	65	90	105	115	85	85	200
Querlast mit Hebelarm, Stahl g	erzinkt								
Charakteristischer Widerstand (Stahl 4.6)	M ⁰ Rk,s ¹⁾	[Nm]	6,1	15	15	30	30	52	133
Teilsicherheitsbeiwert	γMs	[-]				1,67			
Charakteristischer Widerstand (Stahl 4.8)	M ⁰ Rk,s ¹⁾	[Nm]	6,1	15	15	30	30	52	133
Teilsicherheitsbeiwert	γMs	[-]				1,25			
Charakteristischer Widerstand (Stahl 5.6)	$M^0_{Rk,s}$ 1)	[Nm]	7,6	19	19	37	37	65	166
Teilsicherheitsbeiwert	$\gamma_{\sf Ms}$	[-]				1,67			
Charakteristischer Widerstand (Stahl 5.8)	M ⁰ Rk,s ¹⁾	[Nm]	7,6	19	19	37	37	65	166
Teilsicherheitsbeiwert	γ Ms	[-]				1,25			
Charakteristischer Widerstand (Stahl 8.8)	M ⁰ Rk,s ¹⁾	[Nm]	12	30	30	59	60	105	266
Teilsicherheitsbeiwert	γ Ms	[-]				1,25			
Querlast mit Hebelarm, Nichtro	stender Sta	ahl A4,	HCR						
Charakteristischer Widerstand (Festigkeitsklasse 70)	M ⁰ Rk,s ¹⁾	[Nm]	11	26	26	-	52	92	233
Teilsicherheitsbeiwert	$\gamma_{\sf Ms}$	[-]				1,56			
Charakteristischer Widerstand (Festigkeitsklasse 80)	M ⁰ Rk,s ¹⁾	[Nm]	12	30	30	-	60	105	266
Teilsicherheitsbeiwert	γMs	[-]				1,33			

¹⁾ Charakteristische Biegemomente M⁰_{Rk,s} für Gleichung (5.5) in ETAG 001, Anhang C bzw. für Gleichung (14) in CEN/TS 1992-4-4

Einschlaganker E / ES	
Leistung Charakteristischer Widerstand für h ef ≥ 30 mm in Massivbetonbauteilen	Anhang C1

Tabelle C2: Charakteristische Werte für hef = 25 mm in Massivbetonbauteilen

Dübelgröße			M6x25	M8x25	M10x25	M12x25
Last in jede Richtung						
Charakteristischer Widerstand in Beton C12/15 bis C16/20	F^0_Rk	[kN]	2,5	2,5	3,5	3,5
Charakteristischer Widerstand in Beton C20/25 bis C50/60	F^0_Rk	[kN]	3,5	4,0	4,5	4,5
Teilsicherheitsbeiwert	γм	[-]		1,5		
Achsabstand	Scr	[mm]	75	75	75	75
Randabstand	Ccr	[mm]	38	38	38	38
Querlast mit Hebelarm						
Charakteristischer Widerstand (Stahl 4.6)	M ⁰ Rk,s ¹⁾	[Nm]	6,1	15	30	52
Teilsicherheitsbeiwert	γ_{Ms}	[-]		1,	67	
Charakteristischer Widerstand (Stahl 4.8)	M ⁰ Rk,s ¹⁾	[Nm]	6,1	15	30	52
Teilsicherheitsbeiwert	γ Ms	[-]		1,	25	
Charakteristischer Widerstand (Stahl 5.6)	$M^0_{Rk,s}$ 1)	[Nm]	7,6	19	37	65
Teilsicherheitsbeiwert	γMs	[-]		1,	67	
Charakteristischer Widerstand (Stahl 5.8)	M ⁰ Rk,s ¹⁾	[Nm]	7,6	19	37	65
Teilsicherheitsbeiwert	γ_{Ms}	[-]	1,25			
Charakteristischer Widerstand (Stahl 8.8)	M ⁰ Rk,s ¹⁾	[Nm]	12	30	60	105
Teilsicherheitsbeiwert	γMs	[-]		1,:	25	

 $^{^{1)}}$ Charakteristische Biegemomente $\mathrm{M^0_{Rk,s}}$ für Gleichung (5.5) in ETAG 001, Anhang C bzw. für Gleichung (14) in CEN/TS 1992-4-4

Einschlaganker E / ES	
Leistung Charakteristische Werte für die Widerstände hef = 25 mm in Massivbeton	Anhang C2

Tabelle C3: Charakteristische Werte für hef = 25 mm in Spannbetonhohlplatten

Dübelgröße			M6x25	M8x25	M10x25	M12x25		
Last in jede Richtung								
Spiegeldicke	dь	[mm]	≥ 35 (30)¹)					
Charakteristischer Widerstand in Spannbetonhohlplatten C30/37 bis C50/60	F _{Rk}	[kN]	3,5	4,0	4,5	4,5		
Teilsicherheitsbeiwert	γм	[-]		1,5				
Achsabstand	Scr	[mm]		200				
Randabstand	Ccr	[mm]		150				
Querlast mit Hebelarm								
Charakteristischer Widerstand (Stahl 4.6)	M ⁰ Rk,s ²⁾	[Nm]	6,1	15	30	52		
Teilsicherheitsbeiwert	γMs	[-]	1,67					
Charakteristischer Widerstand (Stahl 4.8)	M ⁰ Rk,s ²⁾	[Nm]	6,1	15	30	52		
Teilsicherheitsbeiwert	γMs	[-]	1,25					
Charakteristischer Widerstand (Stahl 5.6)	M^0 Rk,s $^2)$	[Nm]	7,6	19	37	65		
Teilsicherheitsbeiwert	γ_{Ms}	[-]	1,67					
Charakteristischer Widerstand (Stahl 5.8)	M ⁰ Rk,s ²⁾	[Nm]	7,6	19	37	65		
Teilsicherheitsbeiwert	γ_{Ms}	[-]	1,25					
Charakteristischer Widerstand (Stahl 8.8)	ischer Widerstand M ⁰ _{Rk,s} ²⁾ [Nn		12	30	60	105		
Teilsicherheitsbeiwert	γMs	[-]	1,25					

¹⁾ Bei einer Spiegeldicke von 30mm darf der Dübel mit denselben charakteristischen Widerständen verwendet werden, sofern das Bohrloch keinen Hohlraum anschneidet.

Einschlaganker E / ES		
Leistung Charakteristische Werte für die Widerstände h _{ef} = 25	mm in Spannbetonhohlplatten	Anhang C3

 $^{^{2)}}$ Charakteristische Biegemomente $\mathrm{M^0_{Rk,s}}$ für Gleichung (5.5) in ETAG 001, Anhang C bzw. für Gleichung (14) in CEN/TS 1992-4-4

Tabelle C4: Charakteristische Werte unter Brandbeanspruchung in Massivbetonbauteilen C20/25 bis C50/60 für $h_{\rm ef} \ge 30~{\rm mm}$

Dübelg	ıröße		M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65		
Feuerwider- standsklasse Last in beliebige Richtung											
Stahl 4.6	R 30	Charakteristischer Widerstand	F ⁰ _{Rk,fi}	[kN]	0,4	0,6	0,6	0,9	0,9	1,5	3,1
	R 60			[kN]	0,35	0,6	0,6	0,8	0,8	1,3	2,4
	R 90			[kN]	0,30	0,6	0,6	0,6	0,6	1,1	2,0
	R 120			[kN]	0,25	0,5	0,5	0,5	0,5	0,8	1,6
	R 30		F ⁰ _{Rk,fi}	[kN]	0,4	0,9	1,1	0,9	1,5	1,5	4,0
Stahl	R 60	Charakteristischer		[kN]	0,35	0,9	0,9	0,9	1,5	1,5	4,0
4.8	R 90	Widerstand		[kN]	0,3	0,6	0,6	0,9	1,1	1,5	3,0
	R 120			[kN]	0,3	0,5	0,5	0,7	0,9	1,2	2,4
	R 30			[kN]	0,8	0,9	1,5	0,9	1,5	1,5	4,0
Stahl	R 60	Charakteristischer	F ⁰ _{Rk,fi}	[kN]	0,8	0,9	1,5	0,9	1,5	1,5	4,0
≥ 5.6	R 90	Widerstand		[kN]	0,4	0,9	0,9	0,9	1,5	1,5	3,7
	R 120			[kN]	0,3	0,5	0,5	0,7	1,0	1,2	2,4
	R 30		F ⁰ _{Rk,fi}	[kN]	0,8	0,9	1,5	-	1,5	1,5	4,0
A4 /	R 60	Charakteristischer Widerstand		[kN]	0,8	0,9	1,5	-	1,5	1,5	4,0
HCR	R 90			[kN]	0,4	0,9	0,9	-	1,5	1,5	3,7
	R 120			[kN]	0,3	0,5	0,5	-	1,0	1,2	2,4
		Teilsicherheitsbeiwer	γ _{M,fi}	[-]	1,0						
Stahl g	alvaniso	ch verzinkt									
		Achsabstand	S cr,fi	[mm]	130	180	210	170	170	200	400
R 30 - R 120		Randabstand	C _{cr,fi}	[mm]	65	90	105	85	85	100	200
Der Randabstand muss ≥ 300 mm betragen, wenn der Brand von mehr als einer Seite angreift.								ft.			
Nichtrostender Stahl A4, HCR											
		Achsabstand	S _{cr,fi}	[mm]	130	180	210	-	170	200	400
R 30 -	R 120	Randabstand	C _{cr,fi}	[mm]	65	90	105	-	85	100	200
		Der Randabstand mus	s ≥ 300 ı	mm bet	ragen, we	enn der B	rand von	mehr als	einer Se	ite angrei	ft.

Einschlaganker E / ES	
Leistung Charakteristische Werte unter Brandbeanspruchung für hef ≥ 30 mm	Anhang C4

Tabelle C5: Charakteristische Werte unter Brandbeanspruchung in Massivbetonbauteilen C20/25 bis C50/60 für h_{ef} = 25 mm

Dübelg	jröße			M6x25	M8x25	M10x25	M12x25		
Feuerwider- standsklasse Last in beliebige Richtung									
Stahl ≥ 4.6	R 30	Charakteristischer Widerstand	F ⁰ Rk,fi	[kN]	0,4	0,6	0,6	0,6	
	R 60			[kN]	0,35	0,6	0,6	0,6	
	R 90			[kN]	0,30	0,6	0,6	0,6	
	R 120			[kN]	0,25	0,5	0,5	0,5	
Teilsicherheitsbeiwert γ _{M,fi} [-]			[-]	1,0					
R 30 – R 120		Achsabstand	S _{cr,fi}	[mm]	100	100	100	100	
		Randabstand	C _{cr,fi}	[mm]	50	50	50	50	
		Der Randabstand muss ≥ 300 mm betragen, wenn der Brand von mehr als einer Seite angreift.							

Einschlaganker E / ES

Leistung
Charakteristische Werte unter Brandbeanspruchung für hef = 25 mm